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Direct solvers for sparse matrices involve much more complicated algorithms

than for dense matrices. The main complication is due to the need for

eÆcient handling the �ll-in in the factors L and U . A typical sparse solver

consists of four distinct steps as opposed to two in the dense case:

1. An ordering step that reorders the rows and columns such that the

factors su�er little �ll, or that the matrix has special structure such

as block triangular form.

2. An analysis step or symbolic factorization that determines the nonzero

structures of the factors and create suitable data structures for the

factors.

3. Numerical factorization that computes the L and U factors.

4. A solve step that performs forward and back substitution using the

factors.

There is a vast variety of algorithms associated with each step. The

review papers by Du� [9] (see also [8, Chapter 6]) and Heath et al. [18] can

serve as excellent reference of various algorithms. Usually steps 1 and 2

involve only the graphs of the matrices, and hence only integer operations.

Steps 3 and 4 involve oating-point operations. Step 3 is usually the most

time-consuming part, whereas step 4 is about an order of magnitude faster.

The algorithm used in step 1 is quite independent of that used in step 3. But

the algorithm in step 2 is often closely related to that of step 3. In a solver

for the simplest systems, i.e., symmetric and positive de�nite systems, the

four steps can be well separated. For the most general unsymmetric systems,

the solver may combine steps 2 and 3 (e.g. SuperLU) or even combine steps

1, 2 and 3 (e.g. UMFPACK) so that the numerical values also play a role

in determining the elimination order.

In the past 10 years, many new algorithms and software have emerged

which exploit new architectural features, such as memory hierarchy and par-

allelism. In Table 1, we compose a rather comprehensive list of sparse direct

solvers. It is most convenient to organize the software in three categories:

the software for serial machines, the software for SMPs, and the software

for distributed memory parallel machines.
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Code Technique Scope Contact

Serial platforms

MA27 Multifrontal Sym HSL [12]

MA41 Multifrontal Sym-pat HSL [1]

MA42 Frontal Unsym HSL [13]

MA47 Multifrontal Sym HSL [10]

MA48 Right-looking Unsym HSL [11]

SPARSE Right-looking Unsym Kundert [21]

SPARSPAK Left-looking SPD George [15]

SPOOLES Left-looking Sym and Sym-pat Ashcraft [4]

SuperLLT Left-looking SPD Ng [24]

SuperLU Left-looking Unsym Li [6]

UMFPACK Multifrontal Unsym Davis [5]

Shared memory parallel machines

Cholesky Left-looking SPD Rothberg [27]

DMF Multifrontal Sym Lucas [23]

MA41 Multifrontal Sym-pat HSL [2]

PanelLLT Left-looking SPD Ng [17]

PARASPAR Right-looking Unsym Zlatev [28]

PARDISO Left-right looking Sym-pat Schenk [26]

SPOOLES Left-looking Sym and Sym-pat Ashcraft [4]

SuperLU MT Left-looking Unsym Li [7]

Distributed memory parallel machines

CAPSS Multifrontal SPD Raghavan [19]

DMF Multifrontal Sym Lucas [23]

MUMPS Multifrontal Sym and Sym-pat Amestoy [3]

PaStiX Left-right looking� SPD CEA [20]

PSPASES Multifrontal SPD Gupta [16]

SPOOLES Left-looking Sym and Sym-pat Ashcraft [4]

SuperLU DIST Right-looking Unsym Li [22]

S+ Right-lookingy Unsym Yang [14]

Table 1: Software to solve sparse linear systems using direct methods.
� In spite of the title of the paper

y Uses QR storage to statically accommodate any LU �ll-in

Abbreviations used in the table:

SPD = symmetric and positive de�nite

Sym = symmetric and may be inde�nite

Sym-pat = symmetric nonzero pattern but unsymmetric values

Unsym = unsymmetric

HSL = Harwell Subroutine Library:

http://www.cse.clrc.ac.uk/Activity/HSL
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Fair to say, there is no single algorithm or software that is best for all

types of linear systems. Some software is targeted for special matrices such

as symmetric and positive de�nite, some is targeted for the most general

cases. This is reected in column 3 of the table, \Scope". Even for the same

scope, the software may decide to use a particular algorithm or implemen-

tation technique, which is better for certain applications but not for others.

In column 2, \Technique", we give a high level algorithmic description. For

a review of the distinctions between left-looking, right-looking, and multi-

frontal and their implications on performance, we refer the reader to the

papers by Heath et al. [18] and Rothberg [25]. Sometimes the best (or only)

software is not in public domain, but available commercially or in research

prototypes. This is reected this in column 4, \Contact", which could be

the name of a company, or the name of the author of the research code.

In the context of shift-and-invert spectral transformation for eigensystem

analysis, we need to factorize A � �I , where A is �xed. Therefore, the

nonzero structure of A � �I is �xed. Furthermore, for the same shift �, it

is common to solve many systems with the same matrix and di�erent right-

hand sides. (in which case the solve cost can be comparable to factorization

cost.) It is reasonable to spend a little more time in steps 1 and 2 but

speed up steps 3 and 4. That is, one can try di�erent ordering schemes

and estimate the costs of numerical factorization and solution based on

symbolic factorization, and use the best ordering. For instance, in computing

the SVD, one has the choice between shift-and-invert on AA�, A�A, and"
0 A

A� 0

#
, all of which can have rather di�erent factorization costs.

Some solvers have the ordering schemes built in, but others do not. It

is also possible that the built-in ordering schemes are not the best for the

target applications. It is sometimes better to substitute an external ordering

scheme for the built-in one. Many solvers provide well-de�ned interfaces so

that the user can make this substitution easily. One should read the solver

documentation to see how to do this, as well as to �nd out the recommended

ordering methods.
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